历年来,成人高考数学(二)的考试内容主要分为以下几块:一元函数微积分学、多元函数微分学(主要是二元函数)及概率论初步。其中一元函数微积分学和多元函数微积分学在考试中分数占很大比重,因此这两大块是我们大家尤其要重视的重点。考试题型包括选择题、填空题和解答题。下面我们粗略地看一下考试的主要侧重点。大家可以根据下面的这些复习主线有目的地来进行复习。当然,这些只包括了考点的一部分,要想得高分,还得根据考试大纲的要求进行系统的复习。
极限与函数的连续性
这一部分主要着重于考察大家对极限以及函数的连续性概念的理解,具体主要包括:
导数的应用
在这个主题中,需要大家掌握如下内容:
i)两个中值定理
罗尔定理和拉格朗日中值定理。这里主要考察这两个定理的基本内容,要求大家了解这两个定理分别成立的三个和两个基本条件,会判断给定函数是否满足定理成立的条件及计算满足定理条件的点。
ii)洛必达法则
洛必达法则主要用于计算函数未定式 的极限。这个法则在求函数的极限中起着举足轻重的作用,所以大家要重点掌握。当然,如果大家能够在求极限的过程中,使用等价无穷小量替换将会更大的简化计算过程。这是后话,不再详述。
iii)导数的符号和函数单调性的关系
如果函数在给定区间的导数大于零,则该区间是函数的递增区间。
如果函数在给定区间的导数小于零,则该区间是函数的递减区间。
这个结论主要用于计算函数的单调区间以及后面我们要提及的求函数的极值、最值。
iv)函数的极值、最值
在实际问题中,我们通常可以通过建立模型,把问题转化成求谋个函数的极值和最值问题。这就需要大家掌握用极值的第一、第二充分条件计算函数极值。在这里,只要求大家能计算简单的初等函数极值。
4、函数的微分
函数的微分与函数的导数有密切的关系。函数可导是函数可微的充分必要条件,并且如果函数可微,则只要掌握了这一计算公式,函数的微分就容易计算了。